En 1913 el físico británico nacido en Nueva Zelanda Ernest Rutherford comprobó que el anterior modelo atómico de Thomson, con partículas positivas y negativas uniformemente distribuidas, era insostenible. Las partículas alfa empleadas por Rutherford, muy rápidas y con carga positiva, se desviaban con claridad al atravesar una capa muy fina de materia. Para explicar este efecto era necesario un modelo atómico con un núcleo central pesado y cargado positivamente que provocara la dispersión de las partículas alfa. Rutherford sugirió que la carga positiva del átomo estaba concentrada en un núcleo estacionario de gran masa, mientras que los electrones negativos se movían en órbitas alrededor del núcleo, ligadas por la atracción eléctrica entre cargas opuestas; sin embargo, este modelo de sistema solar no podía ser estable según la teoría de Maxwell ya que, al girar, los electrones son acelerados y deberían emitir radiación electromagnética, perder energía y como consecuencia caer en el núcleo en un tiempo muy breve.
Esto exigió otra ruptura radical con la física clásica, que corrió a cargo del físico danés Niels Bohr; según Bohr, en los átomos existían ciertas órbitas en las que los electrones giran sin emitir radiación electromagnética. Estas órbitas permitidas, los llamados estados estacionarios, están determinadas por la condición de que el momento angular J del electrón de la órbita tiene que ser un múltiplo entero positivo de la constante de Planck dividida entre 2π, es decir, J = nh/2π, donde el número cuántico n puede tomar cualquier valor entero positivo. Estas fórmulas extendieron la cuantización a la dinámica, fijaron las órbitas posibles y permitieron a Bohr calcular los radios de las mismas y los niveles de energía correspondientes. En 1913, el año en que apareció el primer trabajo de Bohr sobre este tema, el modelo fue confirmado experimentalmente por el físico estadounidense nacido en Alemania James Franck y su colega alemán Gustav Hertz.
Bohr desarrolló su modelo con mucha mayor profundidad. Explicó el mecanismo por el que los átomos emiten luz y otras ondas electromagnéticas y propuso la hipótesis de que un electrón “elevado” por una perturbación suficiente desde la órbita de menor radio y menor energía (el estado fundamental) hasta otra órbita vuelve a “caer” al estado fundamental al poco tiempo. Esta caída está acompañada de la emisión de un único fotón con energía E = hu, que corresponde a la diferencia de energía entre las órbitas superior e inferior. Cada transición entre órbitas emite un fotón característico cuya longitud de onda y frecuencia están exactamente definidas; por ejemplo, en una transición directa desde la órbita de n = 3 hasta la de n = 1 se emite un solo fotón, muy distinto de los dos fotones emitidos en una transición secuencial desde la órbita de n = 3 hasta la de n = 2 y a continuación desde ésta hasta la de n = 1. Este modelo permitió a Bohr explicar con gran precisión el espectro atómico más sencillo, el del hidrógeno, que había desafiado a la física clásica.
Aunque el modelo de Bohr se amplió y perfeccionó, no podía explicar los fenómenos observados en átomos con más de un electrón; ni siquiera podía explicar la intensidad de las rayas espectrales del sencillo átomo de hidrógeno; como su capacidad de predicción de resultados experimentales era limitada, no resultaba plenamente satisfactorio para los físicos teóricos.